Vol. 6, No. 3: 00-00

Consistent Subdivision of
Convex Polyhedra into Tetrahedra

Nelson Max
Lawrence Livermore National Laboratory, and University of California, Davis

Abstract. This paper presents a simple method of subdividing a grid of con-
vex polyhedral cells into tetrahedra such that the subdivisions of two adjacent cells
divide their common face into the same set of triangles. The method is then gener-
alized to grids of convex polytopes in n dimensions.

1. Introduction

Visualization algorithms for unstructured polyhedral grids are often simpli-
fied if the grid cells are subdivided into tetrahedra. For example, the cell
projection method is easier for tetrahedra [Shirley, Tuchman 90] than for gen-
eral polyhedra [Max et al. 00]. It is easier to generate a contour surface for
tetrahedral grids than for grids with cubes or more general cells. The tetra-
hedral subdivision of a cell produces a piecewise linear interpolation, which
is simpler than the piecewise polynomial forms for the interpolation of vertex
values across more general cells.

It is important that the subdivision be “consistent” in the sense that the
subdivision of two adjacent cells divides their common face into the same set
of triangles to guarantee that the piecewise linear functions agree on the face
and jointly define a continuous function. More generally, an n-dimensional
grid is called consistent (or conforming) when any two intersecting cells in the
grid intersect along a set of common faces. This paper gives a subdivision
algorithm that guarantees this consistency when the input grid is consistent.

© AK Peters, Ltd.
1 1086-7651/01 $0.50 per page

2 journal of graphics tools

Nielson and Sung [Nielson, Sung 97] gave a method for grids whose cells
have the combinatorial topology of tetrahedra, cubes, triangular prisms, or
“crystals.” In Max et al. [Max et al. 00] we give a similar method for grids
whose cells have the combinatorial topology of tetrahedra, cubes, triangular
prisms, or square pyramids. Both of these subdivision methods, as well as the
one proposed here, use a linear ordering of the vertices. The most common
grid data structure lists the coordinates and data values for the grid vertices
in large arrays, and each cell is defined by its topological type and a list of its
vertex indices. The ordering of the integer indices then provides the desired
linear ordering of the vertices.

2. Algorithm

The algorithm for a grid of three-dimensional polyhedra starts with the trivial
conversion of the descriptions of the vertices and edges from cell data types to
simplex data types. It then subdivides all the two-dimensional face polygons
into triangles. Finally, it subdivides all the polyhedra into tetrahedra.

Input: A cell complex of dimension three, that is, a collection of convex cells
of dimension & < 3. The 0-cells are the vertices, the 1-cells are the
edges, the 2-cells are the faces, and the 3-cells are the polyhedra. Each
k-cell is defined by the list of its boundary face cells of dimension k — 1.

Output: A simplicial complex, that is, a cell complex where all cells are
simplices. A k-simplex is defined by its list of £ 4+ 1 vertices. Thus the
2-cells are all triangles, and the 3-cells are all tetrahedra.

Step 0: Reformat the 0-cells into equivalent simplex descriptions.
Step 1: Reformat the 1-cells into equivalent simplex descriptions.

Step 2: Divide each 2-cell F into triangles, by drawing diagonals from the
least index vertex V of F'. These triangles join V to each edge of F that
does not have V as a vertex.

Step 3: Divide each 3-cell K into tetrahedra by joining its vertex V of least
index to all the triangles from faces F' in the boundary of K that do not
have V as a vertex.

To show consistency, we need to show that the subdivision of K in Step 3
is consistent with the subdivision of its faces in Step 2. This is clearly true
along a face F' not having V as a vertex, because the tetrahedra were formed
from the triangles in F'. For a face G having V as a vertex, V is the least
index vertex in G, since it is the least index vertex in all of K. Therefore

Max: Consistent Subdivision of Convex Polyhedra into Tetrahedra 3

E

Figure 1. Quadrilateral pyramid ABF'E and triangular prism BCDEFG, both
shown in thick lines, share face BCF E. The vertex indices increase in alphabetical
order. Thin lines show the resulting tetrahedra ABCF, ABFFE, BCDG, BCGF,
and BEF(@, which meet consistently, in particular, along the two triangles BC'F
and BFE into which face BCFFE was subdivided.

Step 2 divides G by diagonals from V. This is consistent with the way the
tetrahedra joined to V in Step 3 subdivide G. See Figure 1 for an example.

3. Degenerate Cases

For the algorithm to be useful, the input cells must be strictly convez, that
is, convex and with the further property that if C' is a grid cell, F' is a lower-
dimensional k-face of C, and H is the hyperplane of dimension k containing F,
then no other vertex of C' (except those of F') lies in H. Figure 2 shows a case
where this condition is violated and some of the tetrahedra constructed are
degenerate. The piecewise linear function defined by interpolation inside the
nondegenerate tetrahedra may then have discontinuities across the degenerate
tetrahedra.

On the other hand, if K is strictly convex, the tetrahedra constructed from
it in Step 3 will be nondegenerate and have disjoint interiors. They will stay
within K and together fill K. Therefore, the piecewise linear interpolation
will be well defined and continuous.

Polyhedra in grids with nonplanar faces cannot be convex, but the algo-
rithm can be viewed as providing a collection of tetrahedra that join the grid
vertices consistently and fill the grid volume. The motivating application is to
selectively subdivide cells with nonplanar faces in a view-dependent manner
in order to break cycles in a visibility sort for back-to-front compositing. (See
[Max et al. 00].)

4 journal of graphics tools

E G

Figure 2. A nonstrictly convex polyhedron ABCDEF, with edges AB and BC
along the same line, and with triangular face ABE and quadrilateral face BCDE in
the same plane. The vertex indices increase in alphabetical order. The algorithm will
divide face ABCF into degenerate triangle ABC and nondegenerate triangle ACF,
and face BCDFE into triangles BCD and BDFE. It will produce two degenerate
tetrahedra ABCD and ABDE, as well as two nondeteriorate tetrahedra ACDF
and ADEF.

4. Generalization to n Dimensions

The input to the n-dimensional algorithm is a cell complex of dimension n,
that is, a collection of cells of dimension k < n. Each k-cell is defined by the
list of its boundary faces of dimension k—1. These faces must fit together with
the manifold topology of a (k — 1)-sphere. However, the whole cell complex
need not have manifold topology, and the subdivision algorithm will still work
for nonmanifold cell complexes.

In an abstract cell complex, the 0-cells (vertices) carry no information ex-
cept their unique names, but in a geometric cell complex, they have coordi-
nates in some m-dimensional space. The algorithm below applies to abstract
cell complexes, since it does not use any vertex geometry. However, the con-
cept of consistency does not have meaning unless the geometry of the vertices
is specified, so that the intersection of two different cells makes sense.

The construction in n dimensions follows the same pattern as in three
dimensions, with Step 4 replacing the cells of dimension ¢ with i-simplices.
Thus Step 2 replaces 2-cells (polygons) by 2-simplices (triangles), and Step
3 replaces 3-cells (polyhedra) by 3-simplices (tetrahedra). The construction
Join(V,F), joining a vertex V to an i-simplex F, returns an (¢ + 1)-simplex
with all the vertices of F, plus one added vertex V.

Max: Consistent Subdivision of Convex Polyhedra into Tetrahedra 5

simplicial-complex Subdivide(cell-complex U) {
n = dimension U
for (i = 0; i <= n; i++) {
U = Step(U, 1)
}
return U;

}

cell-complex Step(cell-complex U, int i){
for each cell C of dimension i

if (i <= 1)
replace C by (simplex) C
else {

V = vertex of C with lowest index
for each face F of C of dimension i-1
if (F does not have V as a vertex) {
J = Join(V, F)
add J to U
}

remove C from U

}

return U

5. Consistency Proof

The output in n dimensions is consistent for basically the same reasons as in
the three-dimensional case, but a precise proof takes somewhat more work.
The pseudocode above produces the correct list of n-simplices at the end of
Subdivide, but the intermediate results are somewhat inconsistent, because
Step does not add all the faces of the new simplices it adds, and does not
replace the cell C in the face lists of other cells when it removes C from U.
We will use induction to prove that Subdivide produces a consistent grid of
simplices when its input cell complex is consistent; we need to show that each
Step(U,i) produces a consistent cell complex when its input is consistent.

The revised pseudocode below produces good cell complexes after every in-
termediate step, taking care to replace cell C in the face lists of the other cells
when it removes C from U. Since Step(U,i) replaces only the cell descriptions
in dimension 7 with simplex descriptions, the intermediate grids are hybrids of
cells and simplices. This is not a problem, since the boundary faces of a sim-
plex C can be constructed easily from its vertex list. The input of Step(U,1i)
is a hybrid structure with all cells of dimension j < i replaced by simplices,
and the output is one with all cells of dimension j < i replaced by simplices.

6 journal of graphics tools

The construction A11Boundary (C) follows the boundary lists of the faces of
cell C recursively to build the set of all faces of any dimension in the boundary
of C. The loop over the dimension j of the cells in A11Boundary(C) ensures
that when a simplex is added to U, its faces are already in U. The cell sets
T, X, and Y are not needed in the algorithm, but are used in the consistency
proof.

hybrid-complex Step (hybrid-complex U, int i){
for each cell C of dimension i

if (i <=1)
replace C by (simplex) C
else {

V = vertex of C with lowest index
cell set S = {} // for replacing C in boundary lists
cell set X = {}, Y=A{}, T = {} // for proof only
D = AllBoundary(C)
for (j = 0; j <=1, ++j) {
for each face F in D of dimension j
if (F does not have V as a vertex) {
J = Join(V, F)
if (J is mot in U) {
add J to U // the faces of J are already in U
add F to Y
if (j == i) add J to S

¥
else
add F to T
}
else
add F to X

}
for every cell E in U of dimension i+1
if (C appears in the boundary list of E)
replace C by S in the boundary list of E
remove C from U

}

return U

Suppose the input Uy to Subdivide is a consistent geometrical cell complex
with strictly convex cells. We prove that the output is consistent by induction
on i in the for loop in Subdivide. If i is 0 or 1, Step(U,i) does not
change the geometry of the grid; it only replaces cell descriptions by simplex
descriptions, so the output is still consistent. Now we assume that the input

Max: Consistent Subdivision of Convex Polyhedra into Tetrahedra 7

NS "
NN i\
NN
N i
1Y B \ C
N ~ 1 \
N\ ~
N ~ \
\ ~ 1 \
N N~ \
N\ ~
N . by
~
A 1 & \
1 ~
N ~ it
\I ~ \
rrrrrr - - ~
E~SEET < N \
S ~ ~ \
~- & N\
S N0
S ~
s 2y

Figure 3. Hexahedron ABCDEFGH, considered as a 3-cell C subdivided by the
algorithm. Vertex indices are increasing in alphabetical order, so A is the least index
vertex V. The set T consists of the vertices B, C', D, H, F/, and F, and the edges
BC,CD,DH,HE,EF, and FB, which are drawn with thick lines. The set Y is
drawn lightly shaded, and consists of vertex G, edges BG,CG, DG, HG, EG, and
F@G, and triangles BCG,CDG,DHG, HEG, EFG, and I'BG.

to Step(U,1i) is a consistent hybrid complex, and we show that its output is
also consistent. It is sufficient to show that the subdivision of a single cell C is
consistent with itself in the interior of C, and is consistent with the subdivision
of the boundary of C, because then consistency between (pieces of) different
cells follows from the consistency of the input to Step(U,1i).

Let C be an i-cell, let V be the least index vertex of C, and let D =
A11Boundary(C). Let X be the subset of D of faces with V as a vertex; let
T be the subset of D of the faces F such that Join(V,F) is in U, and let Y
= D-X-T be the remaining faces in D. (See pseudocode above and Figure 3.)
Now, if B is a cell of Uy of any dimension that is in the boundary of C, and
B has V as a vertex, then V is also the smallest index vertex of B, since the
vertices of B are a subset of those of C. Thus all these cells have been sub-
divided using joins from V, to produce cells in X. The other cells of Uy in the
boundary of C, without V as a vertex, produce cells in T or Y. Note that a
simplex J = Join(V,F) is added to U by Step(U,1) acting on C if and only
if F is a member of Y. Each such face F comes from a face Fy in Uy not con-
taining V as a vertex, since all faces with V as a vertex were used to build X
instead. Therefore, since Uy is strictly convex, V is not in the plane of Fy or
F, and each added simplex J is nondegenerate. (We need to go back to U,
here, because Step(U, i) produces grids which are not strictly convex when it
subdivides faces.) Again, by convexity, the interiors of all such added cells are
disjoint, lie inside C, and fill the interior of C. Since Join(V,F) N Join(V,G) =
VU Join(V,FNG), and by the induction hypothesis on the input to Step (U,1),
D is consistent, and the added cells are consistent among themselves.

8 journal of graphics tools

Recall that the cells of Uy in the boundary of C that have V as a vertex
have been subdivided using joins from V. This means that T is the boundary
of Y, and X is V plus the cells of the form Join(V,F), with F in T. Thus the
cells added to replace C are consistent with the part of D in X U T. Finally,
these added cells are consistent with the part of D in Y by their construction
as Join(V,F) for F in Y. This shows that the subdivision of C is consistent
with D.

Acknowledgment. This work was performed under the auspices of the U.S.
Department of Energy by the University of California, Lawrence Livermore National
Laboratory under contract number W-7405-ENG-48, and was specifically supported
by the Accelerated Strategic Computing Initiative. Suggestions from jgt editors
Ronen Barzel and John Hughes greatly improved this paper.

References

[Max et al. 00] Nelson Max, Peter Williams, and Claudio Silva, Approximate Vol-
ume Rendering for Curvilinear and Unstructured Grids by Hardware-Assisted
Polyhedron Projection, Vol 11 (2000) pp. 53 - 61.

[Nielson, Sung 97] Gregory Nielson and Junwon Sung, Interval Volume Tetrahedral-
ization, Proceedings of IEEE Visualization 97, pp. 221 - 228.

[Shirley, Tuchman 90] Peter Shirley and Alan Tuchman, “A Polyhedral Approxima-
tion to Direct Scalar Volume Rendering,” Computer Graphics 24:5 (November
1990) pp. 63 — 70.

Web Information:
http://www.acm.org/jgt/papers/Max01.

Nelson Max, L-560, Lawrence Livermore National Laboratory, 7000 East Avenue,
Livermore, CA 94550. (max2@llnl.gov)

Received August, 2001; accepted in revised form December 5, 2001.

